Functional Additive Models
نویسندگان
چکیده
In commonly used functional regression models, the regression of a scalar or functional response on the functional predictor is assumed to be linear. This means the response is a linear function of the functional principal component scores of the predictor process. We relax the linearity assumption and propose to replace it by an additive structure. This leads to a more widely applicable and much more flexible framework for functional regression models. The proposed functional additive regression models are suitable for both scalar and functional responses. The regularization needed for effective estimation of the regression parameter function is implemented through a projection on the eigenbasis of the covariance operator of the functional components in the model. The utilization of functional principal components in an additive rather than linear way leads to substantial broadening of the scope of functional regression models and emerges as a natural approach, as the uncorrelatedness of the functional principal components is shown to lead to a straightforward implementation of the functional additive model, just based on a sequence of one-dimensional smoothing steps and without need for backfitting. This facilitates the theoretical analysis, and we establish asymptotic consistency of the estimates of the components of the functional additive model. The empirical performance of the proposed modeling framework and estimation methods is illustrated through simulation studies and in applications to gene expression time course data.
منابع مشابه
Orthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملSuperstability of $m$-additive maps on complete non--Archimedean spaces
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملFuzzy approximately additive mappings
Moslehian and Mirmostafaee, investigated the fuzzystability problems for the Cauchy additive functional equation, the Jensen additivefunctional equation and the cubic functional equation in fuzzyBanach spaces. In this paper, we investigate thegeneralized Hyers–-Ulam--Rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy Banachspaces. Also, we will show ...
متن کاملSmooth Backfitting for Additive Modeling with Small Errors-in-Variables, with an Application to Additive Functional Regression for Multiple Predictor Functions
We study smooth backfitting when there are errors-in-variables, which is motivated by functional additive models for a functional regression model with a scalar response and multiple functional predictors that are additive in the functional principal components of the predictor processes. The development of a new smooth backfitting technique for the estimation of the additive component function...
متن کامل